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The hippocampus has the capacity for reactivating recently acquired memories and it is hypothesized that
one of the functions of sleep reactivation is the facilitation of consolidation of novel memory traces. The
dynamic and network processes underlying such a reactivation remain, however, unknown. We show that such
a reactivation characterized by local, self-sustained activity of a network region may be an inherent property of
the recurrent excitatory-inhibitory network with a heterogeneous structure. The entry into the reactivation
phase is mediated through a physiologically feasible regulation of global excitability and external input
sources, while the reactivated component of the network is formed through induced network heterogeneities
during learning. We show that structural changes needed for robust reactivation of a given network region are
well within known physiological parameters.
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I. INTRODUCTION

It has been shown that the hippocampus is able to gener-
ate experience-dependent reactivation during REM sleep
�1–5,7�, non-REM �1,2,8–12� sleep, and during quiet periods
of waking �3�. The spatiotemporal patterning of neuronal ac-
tivity during reactivation is correlated with the patterning of
the preceding wake activity �4�, and the correlation between
cells coactive during waking is also higher during sleep
�8,11,13–15�. It is widely thought that this reactivation dur-
ing REM, slow wave sleep �SWS�, as well as quiet waking
serves as a mechanism of memory consolidation �5,16,17�.
However the specific reactivation mechanisms mediating
memory storage remain unknown, though the unique neuro-
chemical environment �5,6� and gene expression patterns
�12,13,16,17� during REM favors a synaptic plasticity role
for this state �5�.

In this paper we address the question of what dynamical
mechanisms are associated with memory reactivation and,
furthermore, what network features mediate the formation of
robust reactivation of network regions. We show that such a
reactivation characterized by local, self-sustained activity of
a network region may be an inherent property of the recur-
rent excitatory-inhibitory network with a heterogeneous
structure.

The relationship between network topology and dynamics
has been recently extensively studied for social, biological,
and artificial networks, including the synchronizability and
coherence of elements in the network �18–24�. It has been
shown that synchronization becomes optimal in a system ex-
hibiting small world �SW� topology �25–28�, i.e., topology in
which there is a coexistence of local connections and random
shortcuts �connections that directly couple distant network
regions�. However, the introduction of heterogeneity in the

nodal degrees �numbers of connections per cell� reduces the
ability of the network to achieve global synchronization. At
the same time it was shown that local variations of network
connectivity characterized by differences in nodal degrees or
coupling strength produce a hierarchical synchronization that
can be observed on separate time scales �29,30�.

It has also been shown that a single layered network of
excitatory neurons having SW topology generates bistable
behavior between self-sustained activity and the quiescent
state �18�. We show that the heterogeneity of the excitatory
network together with the interplay between locally propa-
gating, recurrent excitation and global inhibition provide a
medium to obtain selective regions of self-sustained activity
in the network. The regions of the network having a stronger
of higher degree of local connectivity should change intrinsic
excitability of this region and have a lower threshold of tran-
sition to self-sustained recurrent activity. Thus, the reactivat-
ing regions in the network are inherently determined by the
heterogeneities in network topology.

We illustrate these dynamics on a simple SW network that
structurally emulates a cornu ammonis �CA� hippocampal
network consisting of two interacting layers composed of
excitatory and inhibitory neurons, which represent the local
networks of pyramidal cells and interneurons, respectively.
In both types of local networks short local connections co-
exist with random, long-range connections between distant
neurons. However, the topology of the excitatory, pyramidal
cell network is skewed toward local connectivity, while the
inhibitory networks are thought to be dominated by longer
range connectivity.

To test the validity of the obtained network dynamics, we
made recordings of tens of simultaneously recorded CA1
cells in a freely behaving rat �14� in order to compare the
activity patterns during waking exploration and during spon-
taneous reactivation in sleep with those of our model net-
work. Rats implanted weeks before with a headstage mul-
tiple single-unit recording system �15� were run on a novel*Corresponding author. Electronic mail: michalz@umich.edu
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maze for food reward while hippocampal CA1 place cell
activity was gathered. The same cells were again recorded
for more than 4 h of subsequent spontaneous sleep. The
hippocampus-generated, experience-dependent reactivation
was observed as by others during REM sleep �1–5,7�, non-
REM sleep �1,2,8–12�, and periods of quiet waking �3�. The
spatiotemporal patterning of neuronal activity during reacti-
vation is correlated with the patterning of the preceding
learning activity �4�. In the present study, firing rates and
patterns of rat hippocampal neurons were measured across
sleep/waking reactivation states and compared with model
network dynamics. For a detailed experimental protocol,
please refer to �7,14�.

II. NETWORK STRUCTURE AND DYNAMICS

The network is composed of a larger population
�Ne=500� of excitatory neurons and smaller population
�Ni=100� of inhibitory neurons. This specific cell ratio is
chosen to emulate the physiology of the CA network but
does not affect the observed phenomenon. Both inhibitory
and excitatory networks are one-dimensional small world
network �SWN� having periodic boundary conditions. For
the global, excitatory network the local connections are es-
tablished between cells such that the relative distance from
one to the other lies within the radius Re=5 �for a 1-Dim
network the number of excitatory-excitatory connections per
neuron is nee=2Re� and pg

e is the rewiring parameter defining
the fraction of the number of local connections to the number
of random, long-range ones. Similarly, the global interneuron
subnetwork has Ri=1 �nii=2� and pg

i =1, forming a random
graph network. Every inhibitory interneuron receives input
from nei=5 neighboring excitatory neurons, while every ex-
citatory neuron receives input from nie=10 randomly chosen
inhibitory ones. Thus, the functional topology of the whole
system provides global inhibition driven by focal excitation
in the network. The membrane potential for individual
neurons is determined by

C
dVi/e

j

dt
= − � jVi/e

j + Ii/e + �
k

w jkIsyn
k , �1�

where subscript i /e denotes the type of the neuron
�inhibitory/excitatory, respectively� and Vj is the membrane
voltage of the jth cell. When Vj �1 the neuron fires an action
potential and the membrane potential is reset to Vj =0. The
� j � �1,1.3� is the membrane leak rate constant, and C is
membrane capacitance. The Ii/e denotes the magnitude of ex-
ternal constant current that controls the global excitability
of excitatory and inhibitory networks. The wjk term denotes
the strength of the synaptic connections from the jth to
the kth neuron. The strengths are constant within and
between cell populations, so that wjk=2.0 for j ,k��E,
wjk=10.0 for j ,k��I, wjk=4.0 for j��E ,k��I, and
wjk=2.0 for j��I ,k��E, where �E ,�I denotes excitatory
and inhibitory neural populations, respectively. These spe-
cific values were chosen to balance the amount of excitation
and inhibition in the network but otherwise do not influence
observed dynamics. Finally, Isyn

k is a postsynaptic current
adopted from Netoff �22� and given by

Isyn
k �t� = exp�− �t − tspike

k �
�s

� − exp�− �t − tspike
k �

� f
� , �2�

where tspike
k is the time of spike of the kth neuron and

� f =0.3 and �s=3. The same type of network behavior can be
obtained using pulse coupling �18�.

In addition to the dynamics described by Eq. �1�, indepen-
dent of its membrane potential every neuron may fire
an action potential at every time step �step=0.5 time unit�
with a probability �pexternal=0.0003 if not stated otherwise�.
This process is to mimic neuronal activity that is caused by
activity independent of the network dynamics.

A. Formation of network heterogeneities representing
memory structures

Local network heterogeneity is created only within the
excitatory network and is obtained by the addition of con-
nections �i.e., local changes in nodal degrees� or by strength-
ening the already existing ones between random groups of
neurons. Those connectivity fluctuations are in principle
caused by synaptic modifications incurred during the learn-
ing process �31,32�. For visualization purposes we choose
five distinct regions, each constituting a single memory
structure. Each memory structure is composed of 100 con-
secutively placed excitatory neurons �i.e., 1–100, 101–200,
etc�. The inhibitory subnetwork remains unchanged.

B. Network dynamics

The network dynamics fall into three basic regimes �Fig.
1�, with the global excitability of inhibitory and excitatory
networks �Ii and Ie currents� being the control parameters of
the transitions between these regimes �Fig. 1�b��: random
activation, local self-reactivation, and global bursting. We
differentiated those regimes by analyzing the mean overlap
of activation of the defined memory structures �please see
caption of Fig. 1 for details�.

1. Random activation

Figure 1�b�, region 1, and Figs. 1�c� and 1�f� take place
for low global excitability of the network �currents Ie� Ii or
Ie , Ii�0.7�. In this regime all neurons fire infrequently and
do not generate the activation cascades needed to obtain self-
sustained activity. The network activity is homogeneous and
therefore independent of structural heterogeneities. This is
due to the fact that the neurons’ membrane potential is too
far from the threshold.

2. The local self-reactivation regime

Figure 1�b�, region 2, and Figs. 1�d� and 1�g� occur at
intermediate network excitability levels. In this regime, re-
gions of the network can spontaneously reactivate �Fig. 2�,
generating self-sustained cascades of neural activity �18�.
This persistent activity relies on a reinjection of activity
through existing shortcuts into an already recovered, previ-
ously active domain. This is due to the fact that the network
regions containing additional connectivity have higher intrin-
sic excitability, allowing local spontaneous reactivation for
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lower values of global network excitability. Figure 2 depicts
the occurrence of reactivation dynamics as a function of net-
work excitability for network regions that have various num-
bers of supplementary connections added. The reactivation
threshold in terms of global network excitation �Ie, Ii

currents� is a decreasing monotonic function of the number
of supplementary connections added.

The initial activation of a given network region �memory�
happens at random when enough neurons coactivate to
generate the cascade of local network activity. This activa-

0 .2

0 .4

0 .6

0 .8

0.5 1.4
0.6

1.5

E
xc
ita
to
ry
In
pu
t(
I eII
)

Inhibitory

Excitatory (SWN pg=0.2)

(Local 5-to-1)

0 500 1,000
0

250

Time

500

N
eu
ro
n
no
.

0 500 1,000
0

250

500

Time

S
pi
ke
D
en
si
ty

0 500 1,000
0

250

500

Time

0 500 1,000

100

0

50

0 500 1,000
0

250

500

Time

0 500 1,000
0

Time

50

Inhibitory Input (Ii)

2

2

1

3

100

Time

e

(SWN pg=1.0)
e

(SWN pg=1.0)
e

(c) (d) (e)

(f) (g) (h)

(a) (b)

FIG. 1. �Color� Three dynamical regimes can be observed in network behavior. �a� Diagram of the investigated network. �b� Mean
overlap of activated memory structures as a function of the excitability of the inhibitory and excitatory network �Ii and Ie currents�. The
network achieves three distinct dynamical regimes: 1. Cells fire randomly, driven by external sources; 2. The local self-reactivation regime;
3. The synchronous bursting regime. The numbers 1, 2, and 3 denote parameter regimes that are later used in panels C,D,E,F,G,H. �c� Raster
plot of the firing pattern of excitatory neurons within regime 1; �d� regime 2, and �e� regime 3. Black dots depict the time of action potentials.
�f� Total activation of the excitatory network calculated as A�t�=�kIsyn

k �t� within regime 1; �g� regime 2; �h� regime 3. Mean overlap of the
memory activations �Fig. 1�b�� was estimated by calculating changes in total spiking activity over time for every memory structure. The time
duration of the simulation was divided into M �M =1000� time bins. The total activity of all neurons within every time bin and for every
memory structure was calculated. The renormalized values of activations of M consecutive time bins constituted an M-dimensional activa-
tion vector created for every memory structure. Finally, the dot product of all the activation vectors was calculated and averaged over ten
simulation runs.

(c)

(d)

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

Time 5000
0 0.05
(No. additional connections) / n*(n-1)

I
=
i

I e

1.0

0.5

500

1

.on
norue

N
tnerruc.cx

E tnerruc.hnI

0.1

0.05

0

0.1

0.05

0
0

(a) (b)

FIG. 2. �Color� Dynamics of reactivation of a single network region. �a� Occurrence of reactivation dynamics �the state when a single
memory generates over 50% of the total spikes� as a function of network excitability for network regions with varying numbers of
supplementary connections. �b� Raster plot of neural activity during the reactivation dynamics. �c� Fluctuations in total excitatory current due
to local reactivation. �d� Global feedback inhibition of the excitatory network during reactivation. Local fluctuations in network excitability
reduce the reactivation threshold and allow for focal reactivation. The interaction of local network excitability and global feedback inhibition
limits the reactivation of other network regions while one region is reactivated.

STRUCTURAL NETWORK HETEROGENEITIES AND… PHYSICAL REVIEW E 75, 011912 �2007�

011912-3



tion is characterized by a significantly higher total firing
rate and, in turn, increased activity of inhibitory neurons.
The increased level of inhibition spreads throughout the
excitatory network through the inhibitory feedback connec-
tions, limiting other regions in the network from simulta-
neously reactivating �Fig. 2�b�–2�d��. However, due to spon-
taneous activity fluctuations within the other network regions
and/or a finite probability of internal failure �18� of the al-
ready active region, there is a finite probability that the al-
ready reactivated region can be replaced by reactivation of
another one. These processes result in time-specific local ac-
tivation such that the overlap between the activated regions
is small �Fig. 1�d��.

Thus, the interplay of two basic mechanisms is driving
time-resolved reactivation: local fluctuations in network ex-
citability that allow for focal reactivation, and the interaction
of local network excitability and global inhibition that is lim-
iting reactivation of other network regions while one region
is reactivated. The last mechanism is similar in its basic
function to the lateral inhibition observed in different brain
modalities �33�.

3. The global bursting regime

Figure 1�b�, region 3, and Figs. 1�e� and 1�h� occur when
excitability in the network is high �current Ie� Ii� and leads
to global coactivation of excitatory cells, independent of the
network region to which they belong, resulting in highly pe-
riodic synchronous bursts of activity across the network.
This dynamic could mimic a pathological state observed, for
example, during epilepsy.

C. Magnitude of network heterogeneities leading to local
self-sustained activation

We investigated the magnitude of local network heteroge-
neities that must occur in a given region of the network in

order to facilitate robust patterns of reactivation. Such struc-
tural modifications are thought to take place during the initial
memory formation mediated by the potentiation of existing
synapses and/or the formation of new ones.

We initially created a network having no embedded
memories, i.e., the topology and connectivity strengths were
uniform �Fig. 3�b��. To facilitate the activation of neurons
from a given region constituting a memory, we added con-
nections �Fig. 3�a�� or strengthened the coupling between
existing ones �Fig. 3�e��. We then measured the degree of
activation of the network region as a function of the added
number or increased strength of connections: we calculated
what fraction of activity �number of spikes within the time
window� of the whole network is generated by the neurons
constituting that memory. A high fraction of activation �70–
90%� of any one memory region indicates robust reactivation
of that memory, whereas a fraction of �20% indicates a lack
of reactivation.

The number of additional connections or the magnitude of
increase in the coupling strength depends strongly on the
topology of the underlying global network. For global net-
work topologies favoring dense local connectivities, a rela-
tively small modification of the network region �i.e., low
number of additional connections added or a small increase
of coupling strength� produces robust memory reactivation.
For topologies favoring global connectivities, larger local
modifications are needed to generate a region of robust reac-
tivation. Figures 3�c� and 3�d� show the reactivation resulting
from an increased number of connections within the memory
and from a larger coupling strength, respectively. Both the
doubling in coupling strength as well as a 2% increase of
local connectivity �measured with respect to a fully con-
nected network� within the memory subnetwork are well
within neurophysiological limits �34,35�.

(a) (b) (e)

(c)

(d)

FIG. 3. Measurement of local structural inhomogeneity required for robust self-activation of a network region. �a� Fraction of the total
network activity observed within a formed memory as a function of added connections for different topologies of the excitatory network. �b�
Example of the dynamics in the self-activation regime in a homogeneous network. �c� Example of network dynamics with increased
connection strength inside a single region �memory structure�. �d� Example of the network dynamics with an increased number of added
connections within the memory structure. The number of new connections is 5% of that in a fully connected network �n�n−1�, where n is
the number of neurons constituting a region�. �e� Fraction of the total network activity observed within a formed memory region as a function
of a fractional change in connection strength within that region for different topologies of the excitatory network �as defined above�. Error
bars show the standard deviation, n=10.
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D. Effects of random input on the self-activation
of neuronal ensembles

We investigated the changes in network dynamics in re-
sponse to changing levels of external inputs to the network,
which was obtained by varying the probability of neurons
firing �pexternal� independent of the internal network state.
Such a realization of the external input represents input that
is unstructured or uncorrelated to the internal dynamics of
the network. Higher levels of pexternal result in a higher mean
activation in the whole network. However, the increased
pexternal does not induce self-sustained activity in the network
but abolishes it �Fig. 4�. Thus, the internal network reactiva-
tion is effectively inhibited by external inputs. This is due to
the fact that the random activity of the network does not
allow for formation of propagating active domains that
underlie the self-sustained activity.

To quantify this effect we calculated the mean spike fre-
quency of all neurons in the network and its standard devia-
tion �SD� �Fig. 4�a��. When network dynamics facilitate
memory reactivation �low external input�, the mean spike
frequency is relatively lower but its SD is large �Fig. 4�a��
because of the coexistence of two distinct populations in the
network: neurons belonging to the reactivated region, with a
much higher spiking frequency, and the remaining neurons
with lower spiking frequency �Figs. 4�b�,a and 4�c��. For
higher external input levels, the memories are progressively
less activated, resulting in a uniform Gaussian distribution of
firing frequencies �Fig. 4�b�,b and c and 4�d��.

This finding is consistent with known experimental
measurements. It has been shown that during sleep there

is inhibition at the thalamus of the neuronal pathways lead-
ing from various sensory modalities into the neocortex and
hippocampus �36–39�.

We have also compared the firing rate distributions
obtained from our model with the ones obtained experimen-
tally from in vivo recordings of foraging and sleeping rat
hippocampal cells. Figure 4�e� presents the experimentally
obtained distributions of instantaneous firing frequencies of
CA1 pyramidal cells when rats freely explore a novel envi-
ronment �bottom� and during subsequent REM sleep �top�
when this newly acquired experience was reactivated. The
model network reproduces the experimentally observed shift
toward higher firing frequencies during waking, when tha-
lamic sensory inputs were high. The model also reflects the
shape of the rat CA1 cell firing frequency distribution both in
REM sleep and waking.

E. Activation of a single memory region through the
application of external bias (structured input)

Initial memory formation and subsequent memory reacti-
vation require radically different dynamics. During memory
formation, the externally stimulated neural pattern has to be
incorporated into the network dynamics. Activation of addi-
tional neurons not directly associated with that memory
would be undesirable as it would result in spurious correla-
tions that would impair the quality of the newly formed
memory. On the other hand, during memory reactivation or
retrieval, the activation of relatively few neurons should lead
to the reactivation of many others also involved in the
associated memory.
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FIG. 4. Activation of the network as a function of external input to the network, simulations and experimental data. �a� Average mean
spiking frequency and standard deviation of all excitatory neurons in the network. The frequency distributions are normalized by dividing
them by the mean firing frequency obtained for pexternal=0.0003. External activation of the network �high pexternal� inhibits self-reactivation
of any network region even though the network is, on average, more activated. �b� Examples of the distributions of the normalized firing
frequencies for the three values of external input a, b, and c of �a�. The distribution changes from �a� a bimodal distribution �pexternal

=0.0003�, to �b� a Gaussian distribution for high levels of incoherent activation �pexternal=0.0009�, and �c� pexternal=0.003. �c�, �d� Examples
of the raster plots for low ��c�, pexternal=0.0003� and high �d�, pexternal=0.003� level of external unstructured input. �e� Experimentally
obtained distributions of instantaneous firing rates during waking �bottom� novel maze learning and during novel maze reactivation in REM
sleep �top�. Frequency is normalized by the mean frequency of firing during REM sleep activity.
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We investigated how the application of a bias to the given
memory would facilitate activation of that memory under
different network excitability �Fig. 5�a�� and external input
values �Fig. 5�b��. The bias was introduced by increasing the
excitatory drive Ie to a varying number of randomly chosen
neurons constituting the reactivating region. As before, to
quantify the degree of activation of the region, we calculated
what fraction of activity �number of spikes within time win-
dow� of the whole network is generated by the neurons
constituting that memory region.

For low values of neuronal excitability, the application of
varying bias does not change activation within the region and
the curve remains flat. With an increased level of excitability,
the biased memory region becomes progressively more ex-
cited, forming a sigmoid activation function. For high excit-
ability levels �e.g., REM�, the bias applied even to a few
neurons immediately activates the whole region �Fig. 5�a��.

Conversely, in Fig. 5�b�, increasing external inputs
�pexternal� made it progressively harder to obtain local activa-
tion. For low values of pexternal, the memory region activates
for low values of bias. However, for large values of pexternal,
the progressive bias only weakly increases regional
activation.

III. SUMMARY AND DISCUSSION

In this paper we have investigated dynamical mechanisms
underlying the generation of temporally structured reactiva-
tion patterns occurring during sleep. We have shown that
memory reactivation dynamics observed in the hippocampus
during sleep could be an inherent property of the interacting
inhibitory and excitatory networks characterized by the co-
existence of local connectivity and random shortcuts. We

show that network heterogeneities obtained through the cre-
ation of new synapses or the strengthening of existing ones
lead to robust, self-sustained activation of the neurons con-
stituting the restructured region of the network �memory�.
The entry into the reactivation phase is mediated through the
physiologically feasible regulation of the global excitability
of the network and the strength of external input sources.
The time-resolved reactivation of subsequent regions is me-
diated through the interplay of local excitation and global
inhibition in the network.

From a neurophysiologic perspective, since external input
can inhibit internal reactivation, e.g., during the waking
phase, we hypothesize that sleep provides the condition for
successful reactivation in two ways: sleep can increase the
network excitability through an increase in acetylcholine lev-
els �i.e., during REM� and at the same time sleep limits ex-
ternal inputs to the network. The reactivation also shown to
take place during waking occurs during periods of quiet wak-
ing in the presence of large irregular activity �LIA�, when
acetylcholine levels are again relatively low in the hippoc-
ampus, as during slow wave sleep. This indicates that the
hippocampus has neurophysiological mechanisms that allow
for a fast modulation and regulation of external input sources
between subsets of the waking state. The reactivation
patterns shown in the simulations were corroborated by
experimental data gathered from learning and sleeping rats.
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